Programmed cell death in Acanthamoeba castellanii Neff induced by several molecules present in olive leaf extracts
نویسندگان
چکیده
Therapy against Acanthamoeba infections such as Granulomatous Amoebic Encephalitis (GAE) and Acanthamoeba Keratitis (AK), remains as an issue to be solved due to the existence of a cyst stage which is highly resistant to most chemical and physical agents. Recently, the activity of Olive Leaf Extracts (OLE) was demonstrated against Acanthamoeba species. However, the molecules involved in this activity were not identified and/or evaluated. Therefore, the aim of this study was to evaluate the activity of the main molecules which are present in OLE and secondly to study their mechanism of action in Acanthamoeba. Among the tested molecules, the observed activities ranged from an IC50 of 6.59 in the case of apigenine to an IC50 > 100 μg/ml for other molecules. After that, elucidation of the mechanism of action of these molecules was evaluated by the detection of changes in the phosphatidylserine (PS) exposure, the permeability of the plasma membrane, the mitochondrial membrane potential and the ATP levels in the treated cells. Vanillic, syringic and ursolic acids induced the higher permeabilization of the plasma membrane. Nevertheless, the mitochondrial membrane was altered by all tested molecules which were also able to decrease the ATP levels to less than 50% in IC90 treated cells after 24 h. Therefore, all the molecules tested in this study could be considered as a future therapeutic alternative against Acanthamoeba spp. Further studies are needed in order to establish the true potential of these molecules against these emerging opportunistic pathogenic protozoa.
منابع مشابه
ADP and other metabolites released from Acanthamoeba castellanii lead to human monocytic cell death through apoptosis and stimulate the secretion of proinflammatory cytokines.
Monocytes/macrophages are thought to be involved in Acanthamoeba infections. The aim of this work was to study whether soluble metabolites (ADP and other compounds) released by Acanthamoeba castellanii trophozoites could induce morphological and biochemical changes in human monocytic cells in vitro. We demonstrate here that ADP constitutively released in the medium by A. castellanii, interactin...
متن کاملApoptosis as a mechanism of cytolysis of tumor cells by a pathogenic free-living amoeba.
Previous studies have shown that trophozoites of the pathogenic free-living amoeba Acanthamoeba castellanii rapidly lysed a variety of tumor cells in vitro. Tumor cells undergoing parasite-mediated lysis displayed characteristic cell membrane blebbing reminiscent of apoptosis. The present investigation examined the role of apoptosis (programmed cell death) in Acanthamoeba-mediated tumor cell ly...
متن کاملEffect of lytic enzymes of Acanthamoeba castellanii on bacterial cell walls.
Extracts of Acanthamoeba castellanii (Neff) contain alpha- and beta-glucosidase, beta-galactosidase, beta-N-acetylglucosaminidase, amylase, and peptidase. All of these activities are optimal between pH 3 and 4. These extracts also were found to clarify suspensions of cell walls from nine different gram-positive bacteria, including Micrococcus lysodeikticus. The pH optimum for the lytic activity...
متن کاملAcanthamoeba castellanii induces host cell death via a phosphatidylinositol 3-kinase-dependent mechanism.
Granulomatous amoebic encephalitis due to Acanthamoeba castellanii is a serious human infection with fatal consequences, but it is not clear how the circulating amoebae interact with the blood-brain barrier and transmigrate into the central nervous system. We studied the effects of an Acanthamoeba encephalitis isolate belonging to the T1 genotype on human brain microvascular endothelial cells, ...
متن کاملThe Fine Structure of Acanthamoeba Castellanii (neff Strain)
Encysting cells of Acanthamoeba castellanii, Neff strain, have been examined with the electron microscope. The wall structure and cytoplasmic changes during encystment are described. The cyst wall is composed of two major layers: a laminar, fibrous exocyst with a variable amount of matrix material, and an endocyst of fine fibrils in a granular matrix. The two layers are normally separated by a ...
متن کامل